Transient sensitivity analysis for developing pandemic disease prevention strategies

Zamana Bağlı Duyarlılık Analizi ile Pandeminin Yol Açtığı Hastalıktan Korunma Stratejileri geliştirilmesi Dr.-Ing. Özgür Ertunç¹, Prof. Dr. M. Pınar Mengüç^{1,2}, Prof. Dr. Reyhan Diz Küçükkaya³

 ¹ Özyeğin Üniversitesi, Makina Mühendisliği Bölümü, İstanbul
² Özyeğin Üniversitesi, Enerji Çevre ve Ekonomi Merkezi, İstanbul
³ İstanbul Üniversitesi Fen Fakültesi, Moleküler Biyoloji ve Genetik Bölümü

Dikkat!

Bu raporda sunulan hesaplar kesin değildir. Verilecek kararlara yardımcı olması için hazırlanmıştır. Kullanılan hesap yöntemi ve model katsayıları, literatürdeki araştırmalara göre tutucu bir şekilde seçilmiştir.

World is shaking

- Infected and death patients will increase continuously.
- Health system will collapse or collapsing in many countries.
- Lock-down measures are back and economy experiences the second shock.
- Pandemic will continue to exists until most of the people become immune.

Time-scales of the disease

Probabiliy distributions of time scales

Possible paths of disease development

Susceptible Exposed Infective Removed Equation System (post-symptomatic transmission $\tau_{transmission \ start} > 0$) $\frac{dS}{dt} = -\bar{\beta}(t)\frac{SI}{N} + \alpha(t)S$ $\frac{dE}{dt} = \bar{\beta}(t)\frac{SI}{N} - \frac{shvr test_{ac}}{\tau_{sypmtom onset}}E - \frac{shvr(1 - test_{ac})}{\tau_{latent}}E - \frac{(1 - shvr)}{\tau_{latent}}E$ $\frac{dI}{dt} = \frac{shvr(1 - test_{ac})}{\tau_{latent}}E + \frac{(1 - shvr)}{\tau_{latent}}E - \frac{shvr(1 - test_{ac})}{\tau_{infective}}I - \frac{(1 - shvr)}{\tau_{infective}}I$ $\frac{dQ}{dt} = \frac{shvr \ test_{ac}}{\tau_{sypmtom \ onset}} E - \frac{1}{\tau_{postsymptom}} Q$ $\frac{d\mathbf{R}}{dt} = \frac{\left(1 - dr_q\right)}{\tau_{postsymptom}}\mathbf{Q} + \frac{\left(1 - dr_q\right)shvr\left(1 - test_{ac}\right)}{\tau_{infective}}\mathbf{I} + \frac{\left(1 - dr_i\right)\left(1 - shvr\right)}{\tau_{infective}}\mathbf{I}$ $\frac{d\mathbf{D}}{dt} = \frac{dr_q}{\tau_{postsymptom}}\mathbf{Q} + \frac{dr_q \ shvr \ (1 - test_{ac})}{\tau_{infective}}\mathbf{I} + \frac{dr_i(1 - shvr)}{\tau_{infective}}\mathbf{I}$ $\frac{d\boldsymbol{P}}{dt} = -\alpha \boldsymbol{S}$ Katsavı Anlamı Birim zamanda ortalama bulaşan insan $\bar{\beta}(t)$ Birim zamanda korumaya alınma katsayısı $\alpha(\mathbf{t})$ Semptom göstermeye başlayanların hastaneye gitme oranı. SHVR Instantaneous population N = S + P + E + I + R - DYapılan testlerin doğruluk oranı. testac Ağır semptom gösterip, hastanade yatan ve karantinaya dr_q alınan hastaların ölüm oranı. -ÖZYEĞİN— Karantinaya girmeden bulaşıcılığı geçmiş hastaların ölüm --ÜNİVERSİTESİ dr_i oranı, normal ölüm oranı olrak alınmıştır.

Unknown model parameters are found by using GA optimization algorithms.

Distributions of time scales

Robust optimization algorithm under uncertain conditions

Robust optimization algorithm under uncertain conditions

Robust optimization algorithm under uncertain conditions Solution 14

Robust optimization algorithm under uncertain conditions: Solution 14 (min rms error of detected patients)

Robust optimization algorithm under uncertain conditions: Solution 1 (mid error for detected and death patients)

Transient sensitivity analysis algorithm

Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011

PRCC and **P** value for infective patients (new)

- Parameters related to clinical parameters show always significant correlation.
- Since the number of susceptible are still too large, parameters related to death, as expected, appear to be insignificant.
- Sypmtom onset time scale takes very high P-value, when the PRCC for the same variable takes zero value.
- An interesting observation is that the –correlation of the symptom onset time-scale becomes + at the post peak phase.

PRCC and P value for daily died patients

- Even if the health system works as desired, <u>clinical success is not the most</u> <u>influential parameter on the # of deaths</u>.
- In other words, prevention is the most influential strategy to decrease to number of death patients.
- If there were no patient, there would be no death.

Conclusions

- In order to cease the pandemic nationally, it is shown quantitatively that transmission process has to be broken.
- Transmission can be broken now by
 - Lock down
 - Contact tracing and effective quarantine measures (works best when exposed patients are low). This will reduce new transmissions at pre and post symptomatic phase.
 - Personal measures
 - Mask, hygiene, social distance
 - Less social activity
 - Avoiding closed and crowded environments
 - Institutional measures
 - Regulations for public transport
 - Regulations for closed room usage, esp. regarding airborne transmission.
 - Vaccine (When will it resolve the pandemic?)
- Even if the health system works as desired, clinical success is not the most influential parameter on the # of deaths.

References

[1] World Health Organization. (2009). Pandemic influenza preparedness and response, https://www.who.int/influenza/resources/documents/pandemic_guidance_04_2009/en/ [2] Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533-534. https://doi.org/10.1016/S1473-3099(20)30120-1 [3] Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., & Lipsitch, M. (2020). Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 5793(February 2019), eabb5793. https://doi.org/10.1126/science.abb5793 [4] Peng, L., Yang, W., Zhang, D., Changjing, Z., & Hong, L. (2020). Epidemic analysis of COVID-19 in China by dynamical modeling. MedRxiv, February. https://doi.org/https://doi.org/10.1101/2020.02.16.20023465 [5] Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., Flasche, S., Clifford, S., Pearson, C. A. B., Munday, J. D., Abbott, S., Gibbs, H., Rosello, A., Quilty, B. J., Jombart, T., Sun, F., Diamond, C., Gimma, A., van Zandvoort, K., ... Klepac, P. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 2667(20), 1–10. https://doi.org/10.1016/S2468-2667(20)30073-6 [6] Roda, W. C., Varughese, M. B., Han, D., & Li, M. Y. (2020). Why is it difficult to accurately predict the COVID-19 epidemic? Infectious Disease Modelling, 5(March), 271-281. https://doi.org/10.1016/j.idm.2020.03.001 [7] European Center for Disease Prevention and Control. (2020). Coronavirus disease 2019 (COVID-19) in the EU / EEA and the UK: eighth update (Issue 8th April). https://www.ecdc.europa.eu/En/Publications-Data/Rapid-Risk-Assessment-Coronavirus-Disease-2019-Covid-19-Pandemic-Eighth-Update [8] He, X., Lau, E. H. Y., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y. C., Wong, J. Y., Guan, Y., Tan, X., Mo, X., Chen, Y., Liao, B., Chen, W., Hu, F., Zhang, Q., Zhong, M., Wu, Y., Zhao, L., ... Leung, G. M. (2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine. https://doi.org/10.1038/s41591-020-0869-5 [9] Wölfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M. A., Niemeyer, D., Jones, T. C., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Brünink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., & Wendtner, C. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature. https://doi.org/10.1038/s41586-020-2196-x [10] Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous pupulations. Journal of Mathematical Biology, 28, 365–382. [11] Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (2nd Editio). John Wiley & Sons, Inc. [12] Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of the ACM, 9(3), 297–314. [13] Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), 88–105. [14] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor, MI. [15] Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011

